Roll N	o.	•••••
--------	----	-------

DD-760

M. Sc. (Fourth Semester) EXAMINATION, 2020

CHEMISTRY

Paper Third (CH—21)

(Material and Nuclear Chemistry)

Time: Three Hours

Maximum Marks: 80

Note: Attempt all questions. All questions carry equal marks.

Unit—I

- (a) Discuss the fundamental laws governing force-flux relation in linear and reciprocal manner in an irreversible thermodynamic process.
 - (b) What are coupled reactions? State some examples of coupled reactions in biological system. 8
 - (c) Explain the term 'microscopic reversibility'. 4

Or

(a) Derive mathematical equation for entropy production accompanying heat or matter flow in an irreversible thermodynamic process.

[2	2]	DD-7	6()

	(b)	State Onsager's theory and establish Onsager reciprocal relation.
	(a)	
	(c)	
		Unit—II
2.	(a)	Write a note on Ceramics and their application. 8
	(b)	Discuss the different methods used to find the size of nanoparticles.
	(c)	Explain the electrical and magnetic properties of nanopraticles. 6
		Or
	(a)	What is meant by top-up and top-down synthesis? Discuss the biosynthesis of nanoparticle giving example. 8
	(b)	Discuss the role of SEM and TEM techniques for characterisation of nanoparticle.
	(c)	Describe the application of nanoparticle. 6
		Unit—III
3.	(a)	What is host-guest chemistry? How are cryptands best receptors for spherical cations?
	(b)	Explain the role of co-receptors in multiple recognition.
	(c)	Write a note on supramolecular reactivity and catalysis giving suitable example. 6
		Or
	(a)	Describe various intermolecular interactions in supramolecule.

	(b)	State the principles of molecular association and organisation in supramolecules. 6					
	(c)	What are biological macromolecules?					
	Unit—IV						
4.	(a)	What are magic numbers ? Discuss nuclear shell model.					
	(b)	Discuss the role of tracers in analytical chemistry. 6					
	(c)	What are prompt and delayed neutrons? Discuss distribution of mass energy and charge distribution of fission products.					
		Or					
	(a)	What is semi-empirical mass equation? Discuss its application and limitations.					
	(b)	Explain the significance of multiplication factor for nuclear reactor design. 6					
	(c)	Write a note on radiochemical principle in the use of tracers. 6					

DD-760 2,700